Processing math: 100%
Subalgebra A181+A31C15
51 out of 119
Computations done by the calculator project.

Subalgebra type: A181+A31 (click on type for detailed printout).
Subalgebra is (parabolically) induced from A181 .
Centralizer: 0
The semisimple part of the centralizer of the semisimple part of my centralizer: C15

Elements Cartan subalgebra scaled to act by two by components: A181: (6, 10, 14, 16, 8): 36, A31: (0, 2, 0, 0, 1): 6
Dimension of subalgebra generated by predefined or computed generators: 6.
Negative simple generators: g10+g11+g12+g13, g2+g5
Positive simple generators: 4g13+2g12+2g11+3g10, g5+g2
Cartan symmetric matrix: (1/9002/3)
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): (36006)
Decomposition of ambient Lie algebra: V4ω1+2ω2V5ω1+ω2V6ω1V3ω1+ω2V2ω2Vω1+ω22V2ω1
In the table below we indicate the highest weight vectors of the decomposition of the ambient Lie algebra as a module over the semisimple part. The second row indicates weights of the highest weight vectors relative to the Cartan of the semisimple subalgebra.
Highest vectors of representations (total 8) ; the vectors are over the primal subalgebra.g13+3/4g10g12+g11g9+1/2g7+3/2g6g5+g2g18+3/2g17g25g24g23
weight2ω12ω1ω1+ω22ω23ω1+ω26ω15ω1+ω24ω1+2ω2
Isotypic module decomposition over primal subalgebra (total 8 isotypic components).
Isotypical components + highest weightV2ω1 → (2, 0)Vω1+ω2 → (1, 1)V2ω2 → (0, 2)V3ω1+ω2 → (3, 1)V6ω1 → (6, 0)V5ω1+ω2 → (5, 1)V4ω1+2ω2 → (4, 2)
Module label W1W2W3W4W5W6W7W8
Module elements (weight vectors). In blue - corresp. F element. In red -corresp. H element. Semisimple subalgebra component.
4/3g132/3g122/3g11g10
8/3h5+16/3h4+14/3h3+10/3h2+2h1
2/3g10+2/3g11+2/3g12+2/3g13
g13+3/4g10
h52h43/2h33/2h23/2h1
1/2g101/2g13
g9+1/2g7+3/2g6
1/2g1+1/2g31/2g4
g4+1/2g33/2g1
1/2g61/2g71/2g9
Semisimple subalgebra component.
g5g2
h5+2h2
2g2+2g5
g18+3/2g17
1/2g9+g73/2g6
g163/2g14
g12g3+1/2g4
1/2g4+g3+3/2g1
3/2g143/2g16
g6+2g7+1/2g9
3/2g17+3/2g18
g25
g20
2g13g10
2h54h4+2h3+2h2+2h1
4g106g13
10g20
20g25
g24
g18+g17
g22
2g9g7g6
g16g14
g13g33g4
2g4g3+g1
4g146g16
g6+3g73g9
10g22
4g17+6g18
10g24
g23
g15
g21
2g5g2
g12g11
2g19
3g8
2h5+2h2
2g8
6g19
3g113g12
2g24g5
6g21
6g15
12g23
Weights of elements in fundamental coords w.r.t. Cartan of subalgebra in same order as above2ω1
0
2ω1
2ω1
0
2ω1
ω1+ω2
ω1+ω2
ω1ω2
ω1ω2
2ω2
0
2ω2
3ω1+ω2
ω1+ω2
3ω1ω2
ω1+ω2
ω1ω2
3ω1+ω2
ω1ω2
3ω1ω2
6ω1
4ω1
2ω1
0
2ω1
4ω1
6ω1
5ω1+ω2
3ω1+ω2
5ω1ω2
ω1+ω2
3ω1ω2
ω1+ω2
ω1ω2
3ω1+ω2
ω1ω2
5ω1+ω2
3ω1ω2
5ω1ω2
4ω1+2ω2
2ω1+2ω2
4ω1
2ω2
2ω1
4ω12ω2
2ω1+2ω2
0
2ω12ω2
4ω1+2ω2
2ω1
2ω2
4ω1
2ω12ω2
4ω12ω2
Weights of elements in (fundamental coords w.r.t. Cartan of subalgebra) + Cartan centralizer2ω1
0
2ω1
2ω1
0
2ω1
ω1+ω2
ω1+ω2
ω1ω2
ω1ω2
2ω2
0
2ω2
3ω1+ω2
ω1+ω2
3ω1ω2
ω1+ω2
ω1ω2
3ω1+ω2
ω1ω2
3ω1ω2
6ω1
4ω1
2ω1
0
2ω1
4ω1
6ω1
5ω1+ω2
3ω1+ω2
5ω1ω2
ω1+ω2
3ω1ω2
ω1+ω2
ω1ω2
3ω1+ω2
ω1ω2
5ω1+ω2
3ω1ω2
5ω1ω2
4ω1+2ω2
2ω1+2ω2
4ω1
2ω2
2ω1
4ω12ω2
2ω1+2ω2
0
2ω12ω2
4ω1+2ω2
2ω1
2ω2
4ω1
2ω12ω2
4ω12ω2
Single module character over Cartan of s.a.+ Cartan of centralizer of s.a.M2ω1M0M2ω1M2ω1M0M2ω1Mω1+ω2Mω1+ω2Mω1ω2Mω1ω2M2ω2M0M2ω2M3ω1+ω2Mω1+ω2M3ω1ω2Mω1+ω2Mω1ω2M3ω1+ω2Mω1ω2M3ω1ω2M6ω1M4ω1M2ω1M0M2ω1M4ω1M6ω1M5ω1+ω2M3ω1+ω2M5ω1ω2Mω1+ω2M3ω1ω2Mω1+ω2Mω1ω2M3ω1+ω2Mω1ω2M5ω1+ω2M3ω1ω2M5ω1ω2M4ω1+2ω2M2ω1+2ω2M4ω1M2ω2M2ω1M4ω12ω2M2ω1+2ω2M0M2ω12ω2M4ω1+2ω2M2ω1M2ω2M4ω1M2ω12ω2M4ω12ω2
Isotypic characterM2ω1M0M2ω1M2ω1M0M2ω1Mω1+ω2Mω1+ω2Mω1ω2Mω1ω2M2ω2M0M2ω2M3ω1+ω2Mω1+ω2M3ω1ω2Mω1+ω2Mω1ω2M3ω1+ω2Mω1ω2M3ω1ω2M6ω1M4ω1M2ω1M0M2ω1M4ω1M6ω1M5ω1+ω2M3ω1+ω2M5ω1ω2Mω1+ω2M3ω1ω2Mω1+ω2Mω1ω2M3ω1+ω2Mω1ω2M5ω1+ω2M3ω1ω2M5ω1ω2M4ω1+2ω2M2ω1+2ω2M4ω1M2ω2M2ω1M4ω12ω2M2ω1+2ω2M0M2ω12ω2M4ω1+2ω2M2ω1M2ω2M4ω1M2ω12ω2M4ω12ω2

Semisimple subalgebra: W_{1}+W_{4}
Centralizer extension: 0

Weight diagram. The coordinates corresponding to the simple roots of the subalgerba are fundamental.
The bilinear form is therefore given relative to the fundamental coordinates.
Canvas not supported




Mouse position: (0.00, 0.00)
Selected index: -1
Coordinate center in screen coordinates:
(200.00, 300.00)
The projection plane (drawn on the screen) is spanned by the following two vectors.
(1.00, 0.00)
(0.00, 1.00)
0: (1.00, 0.00): (1100.00, 300.00)
1: (0.00, 1.00): (200.00, 450.00)




Made total 1462843 arithmetic operations while solving the Serre relations polynomial system.
The total number of arithmetic operations I needed to solve the Serre relations polynomial system was larger than 1 000 000. I am printing out the Serre relations system for you: maybe that can help improve the polynomial system algorithms.
Subalgebra realized.
2*2 (unknown) gens:
(
x_{1} g_{-10}+x_{2} g_{-11}+x_{3} g_{-12}+x_{4} g_{-13}, x_{10} g_{13}+x_{9} g_{12}+x_{8} g_{11}+x_{7} g_{10},
x_{5} g_{-2}+x_{6} g_{-5}, x_{12} g_{5}+x_{11} g_{2})
h: (6, 10, 14, 16, 8), e = combination of g_{10} g_{11} g_{12} g_{13} , f= combination of g_{-10} g_{-11} g_{-12} g_{-13} h: (0, 2, 0, 0, 1), e = combination of g_{2} g_{5} , f= combination of g_{-2} g_{-5} Positive weight subsystem: 2 vectors: (1, 0), (0, 1)
Symmetric Cartan default scale: \begin{pmatrix}
2 & 0\\
0 & 2\\
\end{pmatrix}Character ambient Lie algebra: V_{4\omega_{1}+2\omega_{2}}+V_{5\omega_{1}+\omega_{2}}+V_{6\omega_{1}}+V_{2\omega_{1}+2\omega_{2}}+2V_{3\omega_{1}+\omega_{2}}+2V_{4\omega_{1}}+V_{5\omega_{1}-\omega_{2}}+2V_{2\omega_{2}}+3V_{\omega_{1}+\omega_{2}}+4V_{2\omega_{1}}+2V_{3\omega_{1}-\omega_{2}}+V_{4\omega_{1}-2\omega_{2}}+V_{-2\omega_{1}+2\omega_{2}}+3V_{-\omega_{1}+\omega_{2}}+5V_{0}+3V_{\omega_{1}-\omega_{2}}+V_{2\omega_{1}-2\omega_{2}}+V_{-4\omega_{1}+2\omega_{2}}+2V_{-3\omega_{1}+\omega_{2}}+4V_{-2\omega_{1}}+3V_{-\omega_{1}-\omega_{2}}+2V_{-2\omega_{2}}+V_{-5\omega_{1}+\omega_{2}}+2V_{-4\omega_{1}}+2V_{-3\omega_{1}-\omega_{2}}+V_{-2\omega_{1}-2\omega_{2}}+V_{-6\omega_{1}}+V_{-5\omega_{1}-\omega_{2}}+V_{-4\omega_{1}-2\omega_{2}}
A necessary system to realize the candidate subalgebra.
x_{1} x_{7} -3= 0
x_{2} x_{8} +x_{1} x_{7} -5= 0
x_{3} x_{9} +x_{2} x_{8} +x_{1} x_{7} -7= 0
x_{4} x_{10} +x_{3} x_{9} +x_{2} x_{8} -8= 0
x_{4} x_{10} +2x_{3} x_{9} -8= 0
x_{3} x_{12} -x_{2} x_{11} = 0
x_{8} x_{12} -x_{9} x_{11} = 0
x_{2} x_{6} -x_{3} x_{5} = 0
x_{5} x_{11} -1= 0
x_{6} x_{12} -1= 0
x_{6} x_{9} -x_{5} x_{8} = 0
The above system after transformation.
x_{1} x_{7} -3= 0
x_{2} x_{8} +x_{1} x_{7} -5= 0
x_{3} x_{9} +x_{2} x_{8} +x_{1} x_{7} -7= 0
x_{4} x_{10} +x_{3} x_{9} +x_{2} x_{8} -8= 0
x_{4} x_{10} +2x_{3} x_{9} -8= 0
x_{3} x_{12} -x_{2} x_{11} = 0
x_{8} x_{12} -x_{9} x_{11} = 0
x_{2} x_{6} -x_{3} x_{5} = 0
x_{5} x_{11} -1= 0
x_{6} x_{12} -1= 0
x_{6} x_{9} -x_{5} x_{8} = 0
For the calculator:
(DynkinType =A^{18}_1+A^{3}_1; ElementsCartan =((6, 10, 14, 16, 8), (0, 2, 0, 0, 1)); generators =(x_{1} g_{-10}+x_{2} g_{-11}+x_{3} g_{-12}+x_{4} g_{-13}, x_{10} g_{13}+x_{9} g_{12}+x_{8} g_{11}+x_{7} g_{10}, x_{5} g_{-2}+x_{6} g_{-5}, x_{12} g_{5}+x_{11} g_{2}) );
FindOneSolutionSerreLikePolynomialSystem{}( x_{1} x_{7} -3, x_{2} x_{8} +x_{1} x_{7} -5, x_{3} x_{9} +x_{2} x_{8} +x_{1} x_{7} -7, x_{4} x_{10} +x_{3} x_{9} +x_{2} x_{8} -8, x_{4} x_{10} +2x_{3} x_{9} -8, x_{3} x_{12} -x_{2} x_{11} , x_{8} x_{12} -x_{9} x_{11} , x_{2} x_{6} -x_{3} x_{5} , x_{5} x_{11} -1, x_{6} x_{12} -1, x_{6} x_{9} -x_{5} x_{8} )